The linked calculator page gave the formula for calculating the probability so I wrote a quick JavaScript script to execute in the console
//probability of succeeding a roll (win, loss)
function prob(w, l) {
return 1/(w+l)*w;
}
function binomial(n, k) {
let coeff = 1;
for (let x = n-k+1; x <= n; x++) coeff *= x;
for (x = 1; x <= k; x++) coeff /= x;
return coeff;
}
//probability of rolling r number of successes at p probablity with n number of dice
function P(n, r, p) {
return binomial(n,r) * Math.pow(p,r) * Math.pow(1-p,n-r)
};
//probability of rolling /at least/ r at p with n
function Pplus(n, r, p) {
let out = 0;
for(let i = r; i <= n; i++) {
out += P(n, i, p);
}
return out;
}
function battler() {
let opponents = [
[120, 62],
[ 87, 83],
[ 64,128],
[ 64,192]
];
let rolls = 19;
let wins = 10;
let output = [];
for(let [i, stack] = [0, 1]; i < opponents.length; i++) {
let p = prob(...opponents[i]);
let success = Pplus(rolls, wins, p);
stack *= success;
output[i] = [success*100, stack*100];
}
return output;
}
console.log(...battler());